ASBESTOS REMOVAL WORK PLAN
FLOOR TILE REMOVAL PLAN

1) Regulate work area utilizing yellow caution tape and Asbestos Hazard Signage.

2) Set up 3 stage decontamination area.

3) Cover walls with 4mil polysheeting and 4ft high splash guard. Construct exterior tunnel containment with chainlink fencing and polysheeting.

4) Employees will don polypro coveralls and half-face HEPA filtered respirators before entering the work area. Personal air monitoring will be performed in accordance with all applicable laws and regulations.

5) Remove floor tile material using wet methods and hand tools. While still wet floor tile will be bulk loaded in double 6mil polysheeting lined dumpster connected directly connected to containment.

6) Remove mastic material using chemical solvents and floor buffers of razor scrapers.

7) Work area will be encapsulated with a lock-down encapsulant.

8) Work area to be cleared by CAL, Inc.

9) Tear down containment and load out waste.
PIPE LAGGING REMOVAL PLAN

1) Work area will be under containment during floor tile/mastic removal portion of project.

2) Piping will be wrapped in place with 2 layers of 6 mil polysheeting.

3) Glove bag ends of piping to allow sections to be cut and removed in whole.

4) Work area to be cleared by DCAL, Inc.

5) Tear down containment and load out waste.
LABORATORY CERTIFICATION
AAT Performance Results

2700 Prosperity Ave., Suite 250, Fairfax, VA 22031; Phone (703) 849-8888 Fax (703) 207-3561

January 14, 2000
Laboratory ID: 101799

REPORT OF PERFORMANCE FOR ROUND # 52, ORGANIZATION #101799

THE FOLLOWING INDIVIDUALS HAVE MET ALL THE REQUIREMENTS FOR LISTING IN THE ASBESTOS ANALYSTS
REGISTRY (AAR) AND HAVE BEEN APPROVED BY THE AIHA ANALYTICAL ACCREDITATION BOARD:

<table>
<thead>
<tr>
<th>ID</th>
<th>NAME (Approved)</th>
<th>RESULTS (f/mm²) FOR THE CURRENT ROUND (R52)</th>
<th>OUTLIERS</th>
<th>PERFORMANCE RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1672</td>
<td>*Smith, J. Benjamin</td>
<td>A522 532 B522 233 C522 341 D522 445</td>
<td>0 0 0</td>
<td>ACCEPTABLE</td>
</tr>
<tr>
<td>1674</td>
<td>*Donnelly, James</td>
<td>A522 512 B522 213 C522 321 D522 425</td>
<td>0 0 0</td>
<td>ACCEPTABLE</td>
</tr>
<tr>
<td>1674</td>
<td>*Fisher, David</td>
<td>A522 522 B522 223 C522 331 D522 435</td>
<td>0 0 0</td>
<td>ACCEPTABLE</td>
</tr>
</tbody>
</table>

THE DETERMINATION OF OUTLIERS FOR THE ABOVE RESULTS ARE BASED ON THE FOLLOWING PERFORMANCE LIMITS:

Round # 52

SAMPLE ID: A522 B522 C522 D522
LOWER LIMIT: 261 100 200 133
REF VALUE: 526
UPPER LIMIT: 1051 121 184 139

IT IS THE ORGANIZATION'S RESPONSIBILITY TO THOROUGHLY REVIEW RESULTS AND TO IMMEDIATELY CONTACT AIHA IN WRITING TO REQUEST REMOVAL FROM THE ASBESTOS ANALYSTS REGISTRY ANY ANALYST WHO IS NO LONGER A MEMBER OF THEIR ORGANIZATION.

LEGEND:
----9999OUT denotes that a sample ID or sample result was incorrectly submitted or left blank.
---- denotes that a sample ID or sample result was incorrectly submitted or left blank.

CRITERIA FOR AIHA BOARD APPROVAL:

1. An organization has to be reviewed and approved by the Asbestos Analysis Committee (AAC) and has to meet all the requirements of the most current AIHA AAR Policies and NIOSH 7403 method.
2. An analyst has to have completed (2) consecutive AAT rounds with combined score of <=2 outliers.
<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>SAMPLE</th>
<th>REF. VALUE</th>
<th>PERFORMANCE LIMITS</th>
<th>NO. OUTLIERS</th>
<th>OUTLIER SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>METALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CADMIUM (CAD)</td>
<td>1</td>
<td>0.0119</td>
<td>0.0109 - 0.0129</td>
<td>393</td>
<td>HI 47</td>
</tr>
<tr>
<td>(MG)</td>
<td>2</td>
<td>0.0140</td>
<td>0.0133 - 0.0162</td>
<td>18</td>
<td>LO 24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0050</td>
<td>0.0044 - 0.0056</td>
<td>19</td>
<td>LO 30</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0069</td>
<td>0.0061 - 0.0077</td>
<td>23</td>
<td>LO 29</td>
</tr>
<tr>
<td>LEAD (LEA)</td>
<td>1</td>
<td>0.0404</td>
<td>0.0357 - 0.0451</td>
<td>402</td>
<td>HI 14</td>
</tr>
<tr>
<td>(MG)</td>
<td>2</td>
<td>0.0080</td>
<td>0.0075 - 0.0085</td>
<td>12</td>
<td>LO 19</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0639</td>
<td>0.0553 - 0.0726</td>
<td>10</td>
<td>LO 18</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0193</td>
<td>0.0161 - 0.0224</td>
<td>24</td>
<td>LO 14</td>
</tr>
<tr>
<td>ZINC (ZIN)</td>
<td>1</td>
<td>0.2135</td>
<td>0.1845 - 0.2425</td>
<td>392</td>
<td>HI 12</td>
</tr>
<tr>
<td>(MG)</td>
<td>2</td>
<td>0.1208</td>
<td>0.1028 - 0.1387</td>
<td>14</td>
<td>LO 16</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.1625</td>
<td>0.1382 - 0.1867</td>
<td>16</td>
<td>LO 18</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0979</td>
<td>0.0783 - 0.1068</td>
<td>14</td>
<td>LO 15</td>
</tr>
<tr>
<td>SILICA</td>
<td>1</td>
<td>0.0542</td>
<td>0.0183 - 0.0901</td>
<td>93</td>
<td>HI 3</td>
</tr>
<tr>
<td>(SIL)</td>
<td>2</td>
<td>0.0904</td>
<td>0.0414 - 0.1394</td>
<td>2</td>
<td>LO 2</td>
</tr>
<tr>
<td>(MG)</td>
<td>3</td>
<td>0.1161</td>
<td>0.0484 - 0.1838</td>
<td>1</td>
<td>LO 2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0603</td>
<td>0.0154 - 0.1051</td>
<td>1</td>
<td>LO 2</td>
</tr>
<tr>
<td>ASBESTOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASBESTOS (ASD)</td>
<td>1</td>
<td>372.90</td>
<td>113.70 - 781.70</td>
<td>1110</td>
<td>HI 5</td>
</tr>
<tr>
<td>(F/MN2)</td>
<td>2</td>
<td>420.20</td>
<td>120.40 - 901.70</td>
<td>7</td>
<td>LO 30</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>221.00</td>
<td>59.800 - 484.00</td>
<td>7</td>
<td>LO 30</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>273.60</td>
<td>53.400 - 664.00</td>
<td>5</td>
<td>LO 15</td>
</tr>
<tr>
<td>ORGANIC SOLVENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARBON TETRACHLORIDE (CTC)</td>
<td>1</td>
<td>0.1189</td>
<td>0.0927 - 0.1452</td>
<td>352</td>
<td>HI 34</td>
</tr>
<tr>
<td>(MG)</td>
<td>2</td>
<td>0.2428</td>
<td>0.2072 - 0.2785</td>
<td>23</td>
<td>LO 15</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.7224</td>
<td>0.6447 - 0.8002</td>
<td>17</td>
<td>LO 12</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.8954</td>
<td>0.8071 - 0.9837</td>
<td>17</td>
<td>LO 12</td>
</tr>
<tr>
<td>1,2-DICHLOROETHANE (OCE)</td>
<td>1</td>
<td>0.6044</td>
<td>0.5579 - 0.6508</td>
<td>353</td>
<td>HI 27</td>
</tr>
<tr>
<td>(MG)</td>
<td>2</td>
<td>0.8472</td>
<td>0.7647 - 0.9298</td>
<td>11</td>
<td>LO 13</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.2172</td>
<td>0.1900 - 0.2357</td>
<td>29</td>
<td>LO 22</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.4793</td>
<td>0.4333 - 0.5253</td>
<td>16</td>
<td>LO 13</td>
</tr>
<tr>
<td>TRICHLOROETHYLENE (TCE)</td>
<td>1</td>
<td>0.4111</td>
<td>0.3736 - 0.4486</td>
<td>353</td>
<td>HI 19</td>
</tr>
<tr>
<td>(MG)</td>
<td>2</td>
<td>0.3611</td>
<td>0.3265 - 0.3966</td>
<td>16</td>
<td>LO 16</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.3611</td>
<td>0.3265 - 0.3966</td>
<td>16</td>
<td>LO 16</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.3611</td>
<td>0.3265 - 0.3966</td>
<td>16</td>
<td>LO 16</td>
</tr>
</tbody>
</table>

OVERALL: 1306

PROFICIENCY: P = PROFICIENT
RATINGS: H = HIGH OUTLIER
 N = # OF TIMES NONPROFICIENT
 L = LOW OUTLIER
 A = ANALYSIS NOT PERFORMED
OUTLIER: Blank = ANALYSIS ACCEPTABLE
 + = ANALYSIS NOT PERFORMED
NOTE: ONLY ONE PROFICIENCY RATING IS GIVEN FOR METALS AND ONLY ONE PROFICIENCY RATING IS GIVEN FOR ORGANIC SOLVENTS.
AIR MONITORING PROGRAM
AIR SAMPLING PROCEDURES

Air Sampling Professionals (ASP)

* The ASP shall conduct air sampling in accordance with the NIOSH Standard Analytical Method for asbestos in Air P&CAM 239 and/or Method 7400. THE TEM METHOD IS REQUIRED IN SCHOOLS FOR CLEARANCE AIR MONITORING. THIS MAY BECOME STANDARD FOR ALL ABATEMENT CLEARANCE IN THE FUTURE.

* It is recommended that the following schedule be utilized for air sampling during the project (in addition to CAL OSHA compliance monitoring).

* Pre-abatement sampling - A sufficient number of air samples shall be collected prior to the start of abatement activities in order to determine prevalent airborne concentrations. Samples should be taken both inside and outside of the work area and buildings to establish existing levels under normal activity conditions.

* Sampling during the abatement project - The following schedule of samples shall be required on a daily basis, once abatement activities begin. The following are recommended minimums. The size of the abatement activity will impact on the number of samples necessary to adequately monitor the employees activities. Decisions on the number of samples should be made with the advice of the Air Sampling Professional.
 * 2 Area Samples (inside the work area)
 * 2 Personnel Samples (inside the work area)
 * 2 Area Samples (outside the work area in uncontaminated areas the building)
 One of these shall be at the entrance to the worker decontamination enclosure
 * 1 Area Sample (outside the building)
 * 1 Area Sample (at the exhaust of negative pressure ventilation equipment)

* Samples shall be collected at a sampling rate of 0.5 to 2.5 liters/min. A minimum acceptable air volume is 480 liters.

* Post-Abatement (clearance) air sampling shall be conducted following the cleaning phase of work, once the no visible residue criterion has been met. A sufficient number of samples shall be collected aggressively (with portable fans circulating air in the work area to simulate actual use conditions) to determine post abatement air concentrations. An adequate volume of air to provide accuracy to 0.1 fibers/cc is required.

* The Air Sampling Professional shall be experienced and knowledgeable about the methods for asbestos air sampling and be able to select representative numbers and locations of samples.

* If air samples collected outside of the work area during abatement activities indicate airborne fiber concentrations greater than 0.01 f/cc or pre-measured background levels (whichever is lower) work shall immediately stop for inspection and repair of barriers.
Clean-up of surfaces outside of the work area using HEPA vacuums or wet cleaning techniques may be necessary.

* The Air Sampling Professional shall have adequate liability insurance to protect against errors and omissions in the performance of support activities.

AIR SAMPLING EQUIPMENT

PERSONAL SAMPLING PUMP

Employees are required to wear a personal air sampling device to determine the workers exposure level to airborne asbestos fibers in the work place. The sampling unit consists of portable battery operated pump attached to the worker's waist and a filter cassette is secured to the pump by a length of flexible hose. The filter cassette is secured to the worker at his approximated breathing level. The cassette should point at a 45 degree angle to prevent dust and debris from falling into the face of the filter.

The sampling pump has an adjustable rate-of-air flow. A rotameter gauge indicates the air flow in liters per minute. Personal environmental sampling is generally done by adjusting the air flow between one to three liters per minute. The adjustment port and turning the screw inside to set the rotameter ball on a correct setting to achieve the required air flow. Additional adjustments to the rotameter setting may be required as fibers build up on the face of the filters or as the battery charge diminishes. Recalibrate the pump before each use for reliable results.

Safety check should be made prior to implementing the use of the sampling pump. After turning on the pump, place your finger over the intake nipple and check for leaks in the intake assembly. Listen for sluggish function, indicating the batteries are bad or need of recharging. Finally, check to make sure that a filter media is inside the cassette.

To Review:

Personal sampling pumps are used for compliance with OSHA regulations to determine the quality of air at the immediate breathing zone, as well as determining the overall air quality within the work area. These pumps are low volume pumps and are calibrated between 0.5 to 2.5 liters of air per minute with total volume of 480 liters minimum.

High volume pumps are used for pre-abatement samples to determine the quality of air before the work begins. They are also used for environmental samples outside the contaminated area, during the removal process, and for post abatement samples to determine the clearance level for re-occupancy. It is suggested to calibrate these pumps to 2 to 10 liters of air per minute, to detect the much smaller fibers. A minimum volume of 1000 liters of air should be collected for the NIOSH 7400 method.
FILTER Cassettes

The current recommended NIOSH Method P-Cam 7400 analysis technique utilizes a 25mm filter cassette. The filter media actually consists of two separate parts: the filter and the pad backing. The filter is made of cellulose ester and has an effective pore size of 0.8 to 1.2 microns. The backing pad is a thick, fibrous disk which helps to evenly distribute the air flow across the face of the filter. It is possible to purchase sampling cassettes from suppliers both fully assembled and ready to use, as well as unassembled. Care should be taken when assembling the cassettes yourself that you are careful to remove all of the thin, wax-paper dividers that are inserted between the filters and the pads at the factory. Failure to do so will result in an invalid sample. Filter cartridge housing to be made from a "non conductive" material.

AIR SAMPLING PUMP CONSTRUCTION

Air sampling in the asbestos abatement field is normally accomplished using one or more types of pumps: the personal sampling pump, the high-volume sampling pump, and the Fibrous Aerosol Monitoring device.

The primary device used has been the personal sampling unit. The rate-of-flow on these sampling units must be adjustable, usually between one to three liters of air per minute. The unit will have a gauge, referred to as the rotometer, which indicates air flow in liters per minute (L/M).

As the name suggests, the personal sampling unit has essentially been utilized to collect air samples within the contaminated work environment to determine the worker's level of exposure to airborne asbestos fibers. The sampling unit is attached to the worker by means of a belt or other device. The filter medium is attached to the pump by means of a length of flexible hose which allows the filter cassette to be secured to the worker at his approximate breathing level. A number of samples are then collected throughout the entire work shift. As the OSHA asbestos regulation also require that not only the immediate breathing zone be monitored but also the also a quality of the air within the work space must also be determined. A second personal sampling device is positioned within the work area to obtain samples throughout the work shift, again at a position approximately at the worker's breathing zone. This is generally referred to as the work area environmental sample.

High volume air sampling devices are normally used for hazard assessment determinations and testing during abatement projects. They are utilized for pre-abatement work background samples, environmental samples outside the contaminated work area, and post
abatement samples for determining if the area is clean and safe for re-occupancy. The larger volumes of air collected by these units allow for analysis of the air samples to be performed to a much smaller fiber detection limit of 1 to 10 liters of air per minute is suggested.

FAM PROCESS

Fibrous Aerosol Monitor (FAM) is an air monitoring device which utilizes the most modern electronic and laser technologies to instantly detect and measure airborne fibers. Properly utilized, the FAM could provide both the contractor the building owner's representative immediate information of elevated fiber concentrations inside the work area would suggest the need to check the effectiveness of the negative pressure systems or to modify actual work practices. Measurements outside the work area at the entrance to the decontamination system and at other critical barrier locations within the building would be able to assess the effectiveness of the crucial containment system. This on-the-spot analysis ability could well prevent possible widespread contamination of clean areas of the building.

There are some limitations in using the FAM which deserve mentioning. The instrument is unable to differentiate between asbestos and non-asbestos fibers. It will detect and count any fibrous particle being 5 microns or longer, with a diameter of at least 0.5 microns or longer having a 3 to 1 length-to-width ratio. These are the same limitations imposed to PHASE CONTRAST MICROSCOPY analysis method required by OSHA regulations in the performance of worker exposure monitoring.

CLEARANCE AIR MONITORING

Upon completion and visual inspection of an abatement project, clearance air monitoring must be performed to confirm completion of response action. Sampling operations must be performed by qualified individuals completely independent of the abatement contractor to avoid possible conflict of interest.

Clearance air monitoring samples are to be taken using aggressive sampling techniques for clearance after each removal, encapsulation and enclosure project involving ACBM. Except for projects that are small scale short duration.*

Air samples collected under this section, must be analyzed for asbestos using laboratories accredited by the "National Bureau of Standard".

Currently there are two accepted laboratory methods of conducting clearance air monitoring. The first being "TRANSMISSION ELECTRON MICROSCOPE" (T.E.M.) and the second "PHASE CONTRAST MICROSCOPE" (P.C.M.). In both cases there will be 5 inside samples taken and 5 outside samples taken with a sampling pump with a flow rate equal to or less than 10 L/min.
Small scale short duration projects such as but not limited to: Removal of small quantities of ACM only if required in the performance of another maintenance activity not intended as asbestos abatement. The removal of asbestos thermal system insulation not to exceed amount greater than those which can be contained in a single glove bag.

In addition to the 10 samples just discussed, 3 laboratory blanks will be needed. One lab blank taken inside and opened for no longer than 30 seconds, and one taken outside and opened for longer than 30 seconds. The third lab blank is not to be opened. In conclusion, 13 total cassette samples will need to be taken for either the T.E.M. or P.C.M. laboratory analysis.

Whether an 'Air Sampling Professional' or "Lab Technician" is used to perform the physical air sampling for abatement clearance, the following procedures should be followed:

1. Implement a "chain of custody" to insure against cross contamination.

2. A quality control program is necessary to document the quality of the information produced.

3. Sample for asbestos following abatement action using a three piece cassette available commercially in 25 MM size.

4. Use a cowling or a filter retaining middle piece made of conductive material to minimize possible static charge effects on the sample.

5. Use cassette filters from stock lots that have been sampled and found to meet the background asbestos content as specified by the T.E.M. or P.C.M. analysis method.

6. Use sample collection filters which are either polycarbonate or mixed cellulose ester having a pore size of 0.45 microns or less.

7. Place these filters in series with a 5.0 micron backup filter and cellulose support pad.

8. When polycarbonate filters are used, position the highly reflective face such that the incoming particulate is received on this surface.

9. Assemble the cassette in a clean facility.

10. Use wrinkle-free loaded cassettes in the sampling operation.

11. Ensure that the air sampling professional follows the sampling protocol listed in Federal Register/Vol. 52, No. 83/Thursday, April 30, 1987/Proposed rules or the latest E.P.A. regulations as they may become available.
Conduct final clearance sampling only after the primary containment barriers have been removed, the abatement area has been wet wiped, HEPA vacuumed, lock down encapsulation applied and the entire abatement area has been thoroughly dried and has passed visual inspection tests. Note, the final plastic barrier remains in place for the sampling period.

The containment barriers over windows, doors and air passageways must remain in place until the clearance sampling and analysis is completed and results meet clearance test criteria.

Select sampling sites in the abatement area on a random basis to provide an unbiased and representative sampling.

Take a field blank at each abatement area before sampling is initiated by removing the cap for not more than 30 seconds and replacing it, at the time of sampling.

Carry a sealed blank with each sample set. This representative cassette is not to be opened in the field.

Use aggressive sampling conditions to dislodge any remaining dust. Prior to air monitoring, floors, ceiling and walls shall be swept with the exhaust of a 1 horsepower leaf blower.

Negative filtration units shall remain on during the clearance air monitoring sampling.

Stationary fans are placed on two meter high stands in locations which will not interfere with air monitoring equipment. Fan air shall be used for each 10,000 cubic feet of work site.

For ambient sampling, site the ambient samplers at locations representative of the air entering the abatement site. If makeup air entering the abatement site is drawn from another area of the building which is outside of the abatement area, place the pumps in this area. If no such areas exist in the building and the air is drawn from outside of the buildings, pumps should be placed out of doors located near the building, and way from any obstruction that may influence wind patterns. Samples should be representative of any air entering the work site.

Locate the ambient sampling system at least 3 feet apart and protect them from adverse weather conditions.

Be sure to configure the sampling system to preclude pump vibrations from being transmitted to the cassette by using a sampling stand separate from the pump station and making connections with flexible tubing.
After completion of samples is performed, continue the "Chain of Custody" and quality control procedures in transporting and delivering samples to the laboratory for analysis.

For OSHA regulations compliance, either 10% or 2 field blanks, whichever is greater, are required when utilizing P.C.M. protocol under OSHA MANDATORY APPENDIX A.

Laboratory test methods for clearance air sampling range from "PHASE CONTRAST MICROSCOPE" (P.C.M.) having an analytical sensitivity of 0.01 f/cm3 to "TRANSMISSION ELECTRON MICROSCOPE" (T.E.M.) having analytical sensitivity of 0.005 f/cm3.

PHASE CONTRAST MICROSCOPE is a magnification microscope which is capable of examining fibers < 5.0 microns. By counting all fibers collected on sampling cartridge, this process can provide reasonable data supporting the amount of fiber concentration in the air. However, P.C.M. is not capable of differentiating asbestos fibers from other fibers < 5.0 microns with aspect ratios of 3:1. The process of magnification is not a reliable method if the sensitivity requirements of testing are below 0.01 f/cm3. E.P.A. has established a phase out of this method for acceptable clearance air monitoring in schools. This method is not capable of providing reliable accuracy below 0.01 f/cm3, causing this method to fail when analyzing below this level to insure clearance has been met.

The following P.C.M. phase-out dates for clearance air monitoring in schools, do not include small scale, short duration projects consisting of A.C.M. removal of less than 280 sq. ft. or 180 L/ft.:

1st stage > 3000 sq. ft. or 1000 ft. - current through 10/7/89
2nd stage > 1500 sq. ft. or 500 ft - 10/8/89 through 10/8/90
3rd stage unacceptable - 10/8/90 and after

TRANSMISSION ELECTRON MICROSCOPY or T.E.M. is the state of the art laboratory method of analyzing asbestos fibers present in the air. Unlike P.C.M. this method is capable of identifying specific asbestos fibers down to a level of 0.005 f/cm3 with aspect ratios of 5:1. The T.E.M. microscope analyzes the cassette samples by bombarding a specific zone or grid on the cartridge with an electron beam. This information is processed through a variety of hardware and software devices, and the results are very accurate. T.E.M. is the selected laboratory analysis, as it's capable of testing 4 times below the current action level yielding far greater accuracy than P.C.M. The cost of T.E.M. is considerably higher than P.C.M. and it might be advisable to take a pre-clearance range, so that additional preparation can be performed, if needed, prior to taking the T.E.M. samples.

When the 5 inside samples are tested for clearance using T.E.M. and these 5 inside samples are at or below the "Clearance Level " (current 0.01 f/cm3), the contractor will be released from further clearance testing. If the 5 inside samples fail T.E.M. the 5 outside samples and test blanks will be analyzed using the Z-test method.
CHAIN-OF-CUSTODY SAMPLE RECEIVING FORM

Date of package delivery ____________________ Package shipped from ____________________
Carrier ____________________ Shipping bill retained ____________________

*Condition of custody seal ____________________
*Comments ____________________

Number of samples received ______ Shipping manifest attached ____________________

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Receiving #</th>
<th>Assigned #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments ____________________

Date of acceptance into sample bank ____________________

Signature of chain-of-custody recipient ____________________

Disposition of samples ____________________

*Note: If the package has sustained substantial damage or the custody seal is broken, stop and contact the project manager and the shipper.
Exposure Monitoring

* General. Each employer who has a workplace or work operation covered by this standard (29CFR 1926.58 (f)) shall perform monitoring to determine accurately the airborne concentrations of asbestos, tremolite, anthophyllite, actinolite or a combination of these minerals to which employees may be exposed. Determinations of employee exposure shall be made from breathing zone air samples that are representative of the 8 hour TWA of each employee. Representative 8-hour TWA employee exposure shall be determined on the basis of one or more samples representing full-shift exposure for employees in each work area.

* Initial monitoring. Each employer who has a workplace or work operation covered by this standard except as provided for in paragraphs (f)(2)(ii) and (f)(2)(iii) of this section shall perform initial monitoring at the initiation of each asbestos, tremolite, anthophyllite, actinolite job to accurately determine the airborne concentrations of asbestos, tremolite, anthophyllite, or actinolite to which employees may be exposed. The employer may demonstrate that employee exposures are below the action level by means of objective data demonstrating that the product of material containing asbestos, tremolite, anthophyllite, actinolite, or a combination of these materials cannot release airborne fibers in concentrations exceeding the action level under those work conditions having the greatest potential for releasing asbestos, tremolite, anthophyllite, or actinolite. Where the employer has monitored each asbestos, tremolite, anthophyllite, or actinolite jobs, and the data were obtained during work operations conducted under workplace conditions closely resembling the processes, type of material, control methods, work practices, environmental conditions used and prevailing in the employer's current operation, the employer may rely on such earlier monitoring results to satisfy the requirements of paragraph (f)(2)(i) of this section.

* Periodic monitoring within regulated areas. The employer shall conduct daily monitoring that is representative of the exposure of each employee who is assigned to work within a regulated area. EXCEPTION: When all employees within a regulated area are equipped with supplied-air respirators operated in the positive-pressure mode, the employer may dispense with the daily monitoring required by this paragraph.

* Termination of monitoring. If the periodic monitoring required by paragraph (f)(3) of this section reveals that employee exposure, as indicated by statistically reliable measurements, are below the action level, the employer may discontinue monitoring for those employees whose exposures are represented by such monitoring.

* Method of monitoring. All samples taken to satisfy the monitoring requirements of paragraph (f) of this section shall be personal samples collected following the procedures specified in Appendix A. All samples taken to satisfy the monitoring requirements of paragraph (f) of this section shall be evaluated using the OSHA Reference Method
(ORM) specified in Appendix A, or an equivalent counting method. If an equivalent method to the ORM is used, the employer shall ensure that the method meets the following criteria:

A. Replicate exposure data used to establish equivalency are collected in side-by-side field and laboratory comparisons.
B. The comparison indicates that 90% of the samples collected in the range 0.5 to 2.0 times the permissible limit have an accuracy range of plus or minus 25 percent of the ORM results with a 95% confidence level as demonstrated by a statistically valid protocol.
C. The equivalent method is documented and the results of the comparison testing are maintained. To satisfy the monitoring requirements paragraph (f) employers shall rely on the results of monitoring analysis performed by laboratories that have instituted quality assurance programs that include the elements prescribed in Appendix A.

* Employee notification of monitoring results. The employer shall notify affected employees of the monitoring results that represent that employee’s exposure as soon as possible following receipt of monitoring representing the employee’s exposure in writing either individually or by posting at a centrally located place that is accessible to affected employees.

* Observation of monitoring. The employer shall provide affected employees or their designated representatives an opportunity to observe any monitoring of employee exposure to asbestos, tremolite, anthophyllite, or actinolite conducted in accordance with this section. When observation of the monitoring of employee exposure to asbestos, tremolite, anthophyllite, or actinolite requires entry into an area where the use of protective clothing or equipment is required, the observer shall be provided with and be required to use such clothing and equipment and shall comply with all other applicable safety and health procedures.

AIR MONITORING

Air monitoring is conducted prior to, during, and after each asbestos abatement project. The principle reason for conducting air monitoring is to assess the hazards that employees may be exposed to during abatement. The monitoring information will also assist in the evaluation of the methods that will be required.

OSHA has keyed restrictions to exposure above certain levels of fiber concentrations that employees may encounter in the construction industry. Employees should become familiar with the following terms:

0.1 f/cc - PEL - Permissible Exposure Level
0.1 f/cc - Action Level
0.01 f/cc - Clearance level
The permissible exposure level (PEL) establishes the exposure limits of employees to 0.1 fibers per cubic centimeter of air as an (8) hour time-weighted average (TWA). This is keyed to the type of respiratory protection that will be required, the requirement for protective clothing, and requires the employer to restrict and regulate the area. It also requires the employer to notify the employee if test results indicate exposure is above 0.1 f/cc in the work place. Notice is required immediately on receipt of these results.

The action level of 0.1 f/cc TWA requires the employer to provide free medical surveillance to the employee, as outlined in appendix D of the OSHA asbestos standard. If the employees exposure has been above the action level for 30 days per year, the examination is required within 10 days after the thirtieth day of such exposure. For employees who are to wear negative pressure respirators, medical surveillance is required prior to the use of such respirators. Personal daily monitoring is also required for employees exposed above the action level unless they are equipped with supplied air respirators.

Clearance air monitoring is considered the most critical function of air monitoring. Clearance monitoring is performed to determine if the reoccupancy of the building is completely safe after the asbestos removal is completed. The clearance criteria is based on compliance to the 0.01 f/cc OSHA clearance or the clearance established for the atmospheric level indicated prior to the start of abatement. To summarized, the purposes for air monitoring are:

1. Hazard Assessment: This is done prior to abatement to determine current fiber concentration inside and outside the building.

2. Project Monitoring: Sampling and analysis is performed to determine if engineering controls are effectively controlling high fiber concentration, in the work area, and ensuring contamination is contained in the restricted area to protect the building owner from liability. Project monitoring is conducted inside and outside the work area. Pre-tests are conducted prior to the start of abatement activities to determine environmental levels of asbestos fiber concentrations. This will determine acceptable clearance levels for reoccupancy. Monitoring is also conducted outside the decontamination unit to ensure that no asbestos fibers are being released to a clean environment. Samples are conducted using high volume pumps.

DOCUMENTATION OF SAMPLING

It is extremely important that all aspects of air monitoring procedures be thoroughly documented. It might well occur that 30-40 years from now a lawsuit may be initiated because of an asbestos abatement project performed last month. Detailed and accurate monitoring records may prove to be the saving grace for the contractor, consultant, or building owner involved. Total documentation would include:
1. All records, graphs, etc. regarding primary calibration of the sampling pumps.
2. Logs on the hours of pump use and recharging procedures.
3. The field data sheets with all pertinent sampling data.